Event Extraction with Complex Event Classification Using Rich Features

نویسندگان

  • Makoto Miwa
  • Rune Sætre
  • Jin-Dong Kim
  • Jun'ichi Tsujii
چکیده

Biomedical Natural Language Processing (BioNLP) attempts to capture biomedical phenomena from texts by extracting relations between biomedical entities (i.e. proteins and genes). Traditionally, only binary relations have been extracted from large numbers of published papers. Recently, more complex relations (biomolecular events) have also been extracted. Such events may include several entities or other relations. To evaluate the performance of the text mining systems, several shared task challenges have been arranged for the BioNLP community. With a common and consistent task setting, the BioNLP'09 shared task evaluated complex biomolecular events such as binding and regulation.Finding these events automatically is important in order to improve biomedical event extraction systems. In the present paper, we propose an automatic event extraction system, which contains a model for complex events, by solving a classification problem with rich features. The main contributions of the present paper are: (1) the proposal of an effective bio-event detection method using machine learning, (2) provision of a high-performance event extraction system, and (3) the execution of a quantitative error analysis. The proposed complex (binding and regulation) event detector outperforms the best system from the BioNLP'09 shared task challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طبقه‌بندی پتانسیل‌های وابسته به رخداد مربوط به حافظه در بازشناسی تصاویر جدید و قدیم با استفاده ‌از ویژگی‌های زمان-فرکانس

Abstract: The object of this research is development of memory assessment system, using Event Related Potentials. Our approach is using ERPs recorded on Fz, Cz and Pz electrodes. Subjects made old/new recognition judgments on new unstudied unmeaning pictures and old pictures which had been presented at study phase. Features related with memory activity in time-frequency domain were used to achi...

متن کامل

Complex Biological Event Extraction from Full Text using Signatures of Linguistic and Semantic Features

Building on technical advances from the BioNLP 2009 Shared Task Challenge, the 2011 challenge sets forth to generalize techniques to other complex biological event extraction tasks. In this paper, we present the implementation and evaluation of a signaturebased machine-learning technique to predict events from full texts of infectious disease documents. Specifically, our approach uses novel sig...

متن کامل

Joint Modeling for Chinese Event Extraction with Rich Linguistic Features

Compared to the amount of research that has been done on English event extraction, there exists relatively little work on Chinese event extraction. We seek to push the frontiers of supervised Chinese event extraction research by proposing two extension to Li et al.'s (2012) state-of-the-art event extraction system. First, we employ a joint modeling approach to event extraction, aiming to addres...

متن کامل

Event trigger identification for biomedical events extraction using domain knowledge

MOTIVATION In molecular biology, molecular events describe observable alterations of biomolecules, such as binding of proteins or RNA production. These events might be responsible for drug reactions or development of certain diseases. As such, biomedical event extraction, the process of automatically detecting description of molecular interactions in research articles, attracted substantial res...

متن کامل

Chinese Event Extraction Using DeepNeural Network with Word Embedding

A lot of prior work on event extraction has exploited a variety of features to represent events. Such methods have several drawbacks: 1) the features are often specific for a particular domain and do not generalize well; 2) the features are derived from various linguistic analyses and are error-prone; and 3) some features may be expensive and require domain expert. In this paper, we develop a C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2010